The Crystal Structures of the Rare-Earth Hexaaurides RAu ${ }_{6}$

By J. M. Moreau and E.Parthé
Laboratoire de Cristallographie aux Rayons X de l'Université, 32 Bd d'Yvoy, CH-1211 Genève 4, Switzerland

(Received 2 March 1974; accepted 14 March 1974)
The crystal structure of $\operatorname{PrAu} u_{6}$ has been solved by direct methods: monoclinic, $C 2 / c, a=7.765$ (7), $b=7 \cdot 745$ (7), $c=9.076$ (9) $\AA, \beta=100 \cdot 3$ (2) ${ }^{\circ}, Z=4, D_{x}=16 \cdot 3 \mathrm{~g} \mathrm{~cm}^{-3}$, F.W. $1326 \cdot 6, F(000)=2132, R=$ $0 \cdot 10 . \operatorname{PrAu}_{6}$ is isotypic with CeAu_{6} and NdAu_{6}. The PrAu_{6} structure type is built up of layers as in $\beta-\mathrm{W}$, whereas the SmAu_{6} type is constructed of layers as in the σ phase or $\alpha-\mathrm{Mn}$. Both these structure types can be regarded as built up from an interpenetrating packing of centred polyhedra similar to the Frank-Kasper structures, but in which some of the polyhedra are of a new kind. The Pr and Sm atoms have coordinations 18 and 16 respectively and the Au polyhedra, with coordination 13 or 14, represent a compromise between the icosahedron and the cuboctahedron.

Introduction

The intermetallic compounds in the lanthanide-gold systems were recently investigated and reviewed by McMasters, Gschneidner, Bruzzone \& Palenzona (1971) and Steeb, Gebhardt \& Reule (1972). In the 12 $\mathrm{R}-\mathrm{Au}$ systems ($\mathrm{R}=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$, $\mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}$ and Lu) these authors reported seven stoichiometries involving 12 structure types and 80 phases. For the stoichiometry RAu_{6} two different undetermined structure types were recognized, one for $\mathrm{R}=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}$ and another for $\mathrm{R}=\mathrm{Sm}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}$, Ho. In recent papers (Moreau \& Parthé, 1972; Flack,

Fig. 1. The arrangement of the hexagonal Au antiprisms centred by Sm atoms in one half $(0<z<c / 2)$ of the SmAu_{6} cell. Thick line: upper face; thin line: lower face. The arrows on the Sm atoms indicate the inclination of the antiprisms with respect to the plane of projection. The dashed line indicates the unit cell. A rumpled tile consisting of four antiprisms is shaded. The second secondary layer of Au atoms ($z=0$ or $\frac{1}{2}$) is not shown.

Moreau \& Parthé, 1974) the structure for the medium heavy rare-earth compounds $\mathrm{RAu}_{6}(\mathrm{R}=\mathrm{Sm}$ to Ho$)$ was reported. The present investigation was undertaken in order to resolve the second crystal structure and to elucidate the structural features common to these two new structure types.

Experimental

The rare-earth metals were obtained from Johnson Matthey and Brandenberger AG (Switzerland) and were 99.9 wt \% pure; the gold obtained from Engelhard Co. (Switzerland) had a purity of 99.999%. The alloys were prepared by conventional arc-melting methods and were then heat-treated in a sealed quartz tube at $700^{\circ} \mathrm{C}$ for one week. Attempts to isolate single crystals by mechanical means always resulted in plastic deformation. One sample of $\operatorname{PrAu}{ }_{6}$ was then ground to a powder which was annealed in a sealed quartz tube at $700^{\circ} \mathrm{C}$ for three months and from which it was possible to isolate single crystals of about $60 \mu \mathrm{~m}$ diameter.

Lattice constants and intensities were measured with graphite-monochromated Mo $K \alpha$ radiation and a Philips PW 1100 computer-controlled, four-circle goniometer. Intensities could be indexed on the basis of a monoclinic unit cell. The systematic extinction of reflexions with $h+k$ odd for $h k l$, and l odd for $h 0 l$ indicated the space groups $C c$ or $C 2 / c$. The lattice parameters of PrAu_{6} obtained by least-squares fit of d values are $a=7.765$ (7), $b=7.745$ (7), $c=9.076$ (9) \AA and $\beta=100 \cdot 3$ (2) ${ }^{\circ}$. The $\theta-2 \theta$ scan technique was employed to collect all non-equivalent intensities out to a limit of $(\sin \theta) / \lambda=1 \AA^{-1}$. Lorentz and polarization corrections were applied by the method of Levy \& Ellison (1960), and absorption corrections were applied with the tabulated values for a spherical crystal (International Tables for X-ray Crystallography, 1967) with $\mu=1771 \mathrm{~cm}^{-1}$.

All reflexions with intensity less than twice the experimental standard deviation $(I<2 \sigma)$ were considered as
unobserved and only the 1147 observed reflexions were used in the subsequent refinement.

Structure determination

A comparison of the atomic volumes of the elements with the volume of the unit cell indicated that there should be four PrAu_{6} units per cell.

The structure was solved in the centrosymmetric space group $C 2 / c$ by the symbolic addition method [program $L S A M$ written by Main, Woolfson \& Germain (1972)] with 117 reflexions with $E_{h k l}>1 \cdot 5$. A Fourier map corresponding to the best set of phases showed peaks corresponding to 24 Au atoms and 4 Pr atoms with reasonable interatomic distances.

After four cycles of refinement allowing variation of positional and anisotropic thermal parameters for all atoms the value of $R=\Sigma|\Delta F| / \Sigma\left|F_{\text {obs }}\right|$ was $0 \cdot 10$. Atomic
scattering factors were taken from International Tables for X-ray Crystallography (1968). Anomalous dispersion corrections Δf^{\prime} and $\Delta f^{\prime \prime}$ were applied (Cromer \& Liberman, 1970). In the final cycle the weights were set at $1 / \sigma^{2}$ where σ is the experimental standard deviation of $\left|F_{o}\right|$. The refinement was carried out with the fullmatrix least-squares program ORXFLS 3 (Busing et al., 1971b). The calculated and observed structure factors are given in Table 1. The final positional and thermal parameters are listed in Table 2. The interatomic distances and coordinations listed in Table 3 were calculated with the program ORFFE3 (Busing, Martin, Levy, Brown, Johnson \& Thiessen, 1971a).

Isotypic compounds

The compounds CeAu_{6} and NdAu_{6} are isotypic with PrAu_{6}. It was not possible to synthesize LaAu_{6}. The

Table 1. Observed and calculated structure factors for PrAu_{6}
Reading from left to right the columns contain the values $h, k, l,\left|F_{o}\right|$ and $\left|F_{c}\right|$.

Table 2. Atomic positional and thermal parameters $\left(\times 10^{4}\right)$ for PrAu_{6} E.s.d.'s are given in parentheses. The temperature factor is of the form $\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)\right]$.

	Position	x	y	z	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Pr	4(e)	$0 \cdot 0$	$0 \cdot 3148$ (8)	0.25	37 (7)	30 (6)	32 (5)	$0 \cdot 0$	14 (5)	$0 \cdot 0$
$\mathrm{Au}(1)$	$8(f)$	$0 \cdot 4016$ (4)	$0 \cdot 4417$ (4)	$0 \cdot 3649$ (3)	36 (3)	33 (3)	18 (2)	7 (3)	17 (2)	37 (2)
$\mathrm{Au}(2)$	$8(f)$	$0 \cdot 3017$ (4)	$0 \cdot 0804$ (4)	$0 \cdot 4186$ (3)	54 (4)	37 (3)	16 (2)	6 (3)	21 (2)	9 (2)
$\mathrm{Au}(3)$	$8(f)$	$0 \cdot 3535$ (4)	$0 \cdot 1886$ (4)	$0 \cdot 1275$ (3)	36 (3)	29 (3)	11 (2)	10 (3)	2 (2)	1 (2)

Table 3. Interatomic distances in PrAu_{6} less than $4 \AA$

$\operatorname{Pr}-2 \mathrm{Au}(2)$	$3 \cdot 128$ (5) \AA	$\mathrm{Au}(2)-\mathrm{Au}(1)$	2.738 (5) \AA
-2Au(2)	$3 \cdot 137$ (5)	$-\mathrm{Au}(3)$	2.798 (5)
$-2 \mathrm{Au}(1)$	$3 \cdot 210$ (7)	- Au(3)	2.867 (3)
$-2 \mathrm{Au}(2)$	$3 \cdot 228$ (5)	- Au(3)	$2 \cdot 906$ (4)
$-2 \mathrm{Au}(3)$	3.234 (6)	$-2 \mathrm{Au}(1)$	2.968 (5)
$-2 \mathrm{Au}(1)$	$3 \cdot 258$ (5)	- Pr	$3 \cdot 128$ (5)
$-2 \mathrm{Au}(3)$	3.289 (4)	- Pr	$3 \cdot 137$ (5)
$-2 \mathrm{Au}(3)$	3.798 (4)	- $\mathrm{Au}(2)$	$3 \cdot 186$ (6)
$-2 \mathrm{Au}(1)$	3.974 (5)	- Pr	$3 \cdot 228$ (5)
		- $\mathrm{Au}(1)$	$3 \cdot 241$ (5)
$\mathrm{Au}(1)-\mathrm{Au}(3)$	2.723 (5)	- Au(3)	3.264 (5)
- $\mathrm{Au}(2)$	2.738 (5)	- Au(2)	3.404 (7)
- Au(3)	2.763 (7)		
$-2 \mathrm{Au}(1)$	2.797 (7)	$\mathrm{Au}(3)-\mathrm{Au}(1)$	2.723 (5)
- $\mathrm{Au}(3)$	2.887 (5)	- $\mathrm{Au}(3)$	2.741 (6)
$-2 \mathrm{Au}(2)$	2.968 (6)	- $\mathrm{Au}(1)$	2.763 (4)
- Pr	$3 \cdot 210$ (7)	- $\mathrm{Au}(2)$	2.798 (4)
- $\mathrm{Au}(2)$	$3 \cdot 241$ (5)	- $\mathrm{Au}(2)$	2.867 (4)
- Pr	$3 \cdot 258$ (5)	- $\mathrm{Au}(3)$	2.882 (6)
- $\mathrm{Au}(3)$	3.786 (5)	- $\mathrm{Au}(1)$	$2 \cdot 887$ (5)
- Pr	3.974 (5)	- $\mathrm{Au}(2)$	$2 \cdot 905$ (4)
		- Pr	$3 \cdot 234$ (6)
		- $\mathrm{Au}(2)$	$3 \cdot 264$ (5)
		- Pr	3.289 (4)
		- $\mathrm{Au}(1)$	3.786 (4)
		- Pr	3.798 (4)

lattice constants of these two compounds together with those of the morphotropic series having the tetragonal SmAu_{6} structure type are given in Table 4.
In order to allow recognition of the new structure type a powder pattern calculation [program written by Yvon, Jeitschko \& Parthé (1969)] for the low-angle reflexions of PrAu_{6} is listed in Table 5. The corresponding calculation for the SmAu_{6} structure type can

Fig. 2. The arrangement of the hexagonal Au antiprisms centred by Pr atoms in one half $(0<z<c / 2)$ of the PrAu_{6} unit cell. Thick line: upper face; thin line: lower face. The dashed line indicates the unit cell.

Table 4. Lattice parameters of RAu_{6} compounds

			Ref-		
	(\AA)	$b(\AA)$	$c(\AA)$	β	
erence*					

* (a) This work. (b) Flack, Moreau \& Parthé (1974). (c) McMasters, Gschneidner, Bruzzone \& Palenzona (1971).
be found in a paper by McMasters \& Gschneidner (1973).

Table 5. Calculated powder data for PrAu_{6} for Cr K α radiation $(~ \lambda=2 \cdot 29092 \AA$)
Intensities calculated from point positions obtained from singlecrystal data. $I=m F^{2}\left(1+\cos ^{2} 2 \theta / \sin ^{2} \theta \cdot \cos \theta\right)$ is normalized to the strongest line having intensity 1000 .

h	k	l	$\sin ^{2} \theta \times 10^{3}$	Intensity
1	1	0	$44 \cdot 35$	$27 \cdot 7$
1	1	-1	$53 \cdot 93$	$205 \cdot 1$
0	0	2	$65 \cdot 82$	$0 \cdot 0$
1	1	1	$67 \cdot 69$	$198 \cdot 7$
0	2	0	$87 \cdot 49$	$47 \cdot 7$
2	0	0	$89 \cdot 92$	$61 \cdot 0$
1	1	-2	$96 \cdot 42$	$1 \cdot 2$
0	2	1	$103 \cdot 95$	$19 \cdot 2$
1	1	2	$123 \cdot 93$	$28 \cdot 9$
2	0	-2	$128 \cdot 23$	$31 \cdot 5$
0	2	2	$153 \cdot 31$	$94 \cdot 2$
1	1	-3	$171 \cdot 81$	$171 \cdot 3$
2	2	0	$177 \cdot 41$	$18 \cdot 0$
2	2	-1	$180 \cdot 11$	$84 \cdot 5$
2	0	2	$183 \cdot 25$	$31 \cdot 8$
2	2	1	$207 \cdot 62$	$550 \cdot 8$
1	1	3	$213 \cdot 08$	$590 \cdot 7$
2	2	-2	$215 \cdot 72$	$785 \cdot 1$
1	3	0	$219 \cdot 34$	$446 \cdot 6$
3	1	-1	$220 \cdot 01$	$267 \cdot 2$
3	1	0	$224 \cdot 19$	$131 \cdot 8$
1	3	-1	$228 \cdot 92$	$136 \cdot 0$
0	2	3	$235 \cdot 58$	$375 \cdot 4$
1	3	1	$242 \cdot 67$	$1000 \cdot 0$
3	1	-2	$248 \cdot 74$	$919 \cdot 7$
3	1	1	$261 \cdot 28$	$460 \cdot 3$
0	0	4	$263 \cdot 27$	$458 \cdot 4$
2	2	2	$270 \cdot 74$	$559 \cdot 7$
1	3	-2	$271 \cdot 40$	$172 \cdot 1$
1	1	-4	$280 \cdot 11$	$382 \cdot 3$
2	2	-3	$284 \cdot 24$	$545 \cdot 5$
2	0	-4	$298 \cdot 17$	$93 \cdot 1$
1	3	2	$298 \cdot 91$	$1 \cdot 7$
3	1	-3	310.38	$72 \cdot 9$
3	1	2	$33 \cdot 27$	$125 \cdot 7$
1	1	4	$335 \cdot 13$	$18 \cdot 4$
1	3	-3	$346 \cdot 80$	$162 \cdot 3$
0	4	0	$349 \cdot 97$	$8 \cdot 3$
0	2	4	$350 \cdot 76$	$35 \cdot 7$

Crystal chemistry of hexaaurides
For a description of the PrAu_{6} and the SmAu_{6} structure types, it is possible to use the concept of primary and
secondary layers as defined by Frank \& Kasper (1958).
Primary layers are a tessellation of triangles and hexagons (or pentagons) where the connexions correspond to interatomic distances. Secondary layers consist of triangles and/or squares where the connexions do not correspond to interatomic distances. To characterize the structure in a simple manner, one has to indicate the arrangement of the polygons in these layers. This is conveniently done by means of Schläfli symbols [see, for example, Pearson (1972)].

In SmAu_{6} (Fig. 1) the layers are rumpled but still easily recognizable. There is only one type of primary layer formed by Au atoms, but two types of secondary layers, one consisting of Sm atoms only, the second of Au atoms only. The sequence of the layers is as follows:

Primary layer:

First secondary
layer:
Primary layer:
Second secondary layer:

Au atoms with Kagomé tiling $3636+3^{2} 6^{2}+6^{3}(5: 4: 2)$

Sm $3^{2} 434$
Au $3636+3^{2} 6^{2}+6^{3}(5: 4: 2)$
$\mathrm{Au} 4^{4}$
and so on.
The stacking of the first three layers leads to the formation of Sm-centred hexagonal antiprisms. Disregarding for the moment that the layers are not flat, the arrangement of the hexagonal antiprisms is identical with that known for σ-phases. The layers are in fact buckled as in $\alpha-\mathrm{Mn}$. It is possible to combine four Sm-centred hexagonal antiprisms to form a rumpled tile as shown in Fig. 1. The arrows indicate the inclination relative to the plane of projection. The arrangement of one layer of hexagonal antiprisms may thus be represented by a simple tile pattern where it is sufficient to indicate only the outer contours of the rumpled tiles.
In one unit cell of SmAu_{6} along the z direction there are eight layers forming two tile layers separated by a secondary layer 4^{4} of gold atoms.
The $\alpha-\mathrm{Mn}$ and the SmAu_{6} structures - except for the atoms in the second secondary layers - differ in the way the tile layers of hexagonal antiprisms are stacked. Adjacent layers in $\alpha-\mathrm{Mn}$ are displaced by translation, whereas in SmAu_{6} they are rotated by 90°. An explanatory diagram has already been published (Moreau \& Parthé, 1972).

Similarly it is possible to describe PrAu by layers which are only slightly rumpled.
$\left.\begin{array}{ll}\text { Primary layer: } & \mathrm{Au} 3^{2} 6^{2}+3636(2: 1) \\ \text { Secondary layer: } & \mathrm{Pr} 4^{4} \\ \text { Primary layer: } & \mathrm{Au} 3^{2} 6^{2}+3636(2: 1) \\ \text { Secondary layer: } & \text { missing }\end{array}\right\}$ triple layer
and so on.
It is possible to build up the whole PrAu_{6} structure from two triple layers, one in the normal position and the second upside down and displaced by $\frac{1}{2}, \frac{1}{4}, 0$ referred to the cubic axes of $\beta-\mathrm{W}$. An essential difference
with respect to the stacking sequence of SmAu_{6} is the missing second secondary layer of Au atoms between the triple layers. This triple layer can also be interpreted as a planar arrangement of rare-earth centred hexagonal antiprisms as in SmAu_{6} but here connected as in β-tungsten (Fig. 2).

Fig. 3. Schematic drawings of the coordination polyhedra in SmAu_{6} and PrAu_{6}. Thick lines are on top, thin lines on bottom. Thick corners of the hexagon are higher than thin corners. R signifies a rare-earth atom. (a), (b) Coordination around rare-earth atoms: (a) 18 coordination of Pr atoms in PrAu_{6}. Hexagonal antiprism with two triangles, one above and one below. (b) 16 coordination of Sm atoms in SmAu_{6}. Hexagonal antiprism with one triangle below and a single atom on top. (c)-(j) Coordination around gold atoms: (c) 12 coordination. Icosahedron drawn for comparison only. Hexagon in chair configuration with two triangles, one above and one below. (d)-(h) 13 coordination. Top triangle replaced by a square or a rhombus: (d) coordination of $\mathrm{Au}(2)$ in PrAu_{6}, (e) coordination of $\mathrm{Au}(3)$ in SmAu_{6}, (f) coordination of $\mathrm{Au}(1)$ in $\mathrm{SmAu}_{6},(g)$ coordination of $\mathrm{Au}(1)$ in $\mathrm{PrAu}_{6}, \mathrm{Au}(3)$ in PrAu_{6}, (h) coordination of $\mathrm{Au}(2)$ in SmAu_{6}. (i) and (j) 14 coordination. Top and bottom triangles replaced by rhombuses: (i) coordination of $\mathrm{Au}(5)$ in SmAu_{6}, corresponds to Kasper polyhedron for CN14, (j) coordination of $\mathrm{Au}(4)$ in SmAu_{6}.

Fig. 4. Atomic distribution around rare-earth atoms in the SmAu_{6} and the PrAu_{6} structure types. $n=$ number of Au atoms having same distance from rare-earth atom. $d=e x-$ perimentally determined interatomic distance. $\sum r=$ sum of rare-earth and Au atom radii for 12 coordination.

Fig. 5. Lanthanide coordination numbers for the different structure types found with R-Au compounds versus R/Au ratio modified after McMasters, Gschneidner, Bruzzone \& Palenzona (1971).

Whereas the description of these structures by layers is certainly useful for an immediate comprehension of the overall geometrical arrangement of the structure, it is the arrangement of the bonding orbitals of the individual atoms and the shape of the individual coordination polyhedra that we are required to explain for a complete understanding of the formation of these structures. The structures can also be described by an interpenetrating packing of polyhedra such that every atom is the centre of one polyhedron and at the same time member of the coordination polyhedra of all its neighbours. This is the approach of Kasper (1956).

In Fig. 3, it is possible to distinguish the different types of coordination polyhedra found in SmAu_{6} and $\operatorname{PrAu} u_{6}$. The schematic drawings show the connexions between the corners of the polyhedra only when these are parallel or nearly parallel to the plane of projection. As is indicated, one CN 14 polyhedron is similar to the one already described by Frank \& Kasper (1958), but all others are of a new kind.

According to the atomic distribution diagram of Fig. 4, Pr has 18, but Sm 16 first gold neighbours. As shown in Fig. 3 the $\operatorname{PrAu} u_{18}$ polyhedron may be characterized as a hexagonal antiprism with a triangle on the top and the bottom. The SmAu_{16} polyhedron has also a hexagonal antiprism, a triangle below, but only a single Au atom on top. If the base triangle were rotated by 30° the polyhedron would be the Frank-Kasper polyhedron for CN 16 . The gold atoms have 13 or 14 neighbours and have a coordination figure closely related to an icosahedron. As shown in the lower part of Fig. 3, for coordination 13 the upper triangle has been replaced by a square or a rhombus. With coordination 14 the upper and lower triangles have been replaced by rhombuses. For each group the coordination figures differ only slightly either in the deformation of the square or in the number and arrangement of rareearth atoms which participate in the coordination figure of the gold atoms. The surface of the Au coordination figures consists of triangles and deformed squares.

There are thus not only tetrahedral but also deformed octahedral interstices in these structures. We find here a compromise between the two space packing principles for metallic structures for which the conditions can be stated as follows.
(1) Atoms of equal size are close packed with equal interatomic distances giving tetrahedra and octahedral interstices.
(2) Atoms of different size are packed with varying interatomic distances such that all interstices are tetrahedral.

An essential difference between the two structure types is seen in the coordination of the rare-earth elements. The size differences of the rare-earth elements due to the lanthanide contraction are responsible for the difference in coordination in these two structure types. The larger, light rare-earth elements can have more Au atoms in the first coordination shell com-
pared with the smaller, heavier rare-earth elements. In general the difference in coordination between the light and the heavy rare-earth elements can be observed only in compounds where the rare-earth element is a minority component such that every rare-earth element is completely surrounded by atoms of another kind.

In Fig. 5, an extension of a diagram given by McMasters, Gschneidner, Bruzzone \& Palenzona (1971), the coordination numbers of the rare-earth element for all the different RAu structure types are plotted as a function of the R / Au ratio on a logarithmic scale. Large and small rare-earth compounds of composition $\mathrm{R}_{2} \mathrm{Au}$ have the same structure types and the same coordination.

Only with smaller R / Au ratios does one find different structure types and coordinations for the rareearth components. The rare-earth coordinations in the two $R A u_{6}$ structure types follow the expected trend.

Replacing Au with another element of the same group of the periodic system one finds that RAg_{6} compounds do not exist, but CeCu_{6} is known (Cromer, Larson \& Roof, 1960). Copper is smaller than gold and consequently the coordination polyhedron around Ce has 19 Cu atoms.

We are indebted to Dr H . D. Flack for continuous help and advice in computer programming.

References

Busing, W. R., Martin, K. O., Levy, H. A., Brown, G. M., Johnson, C. K. \& Thiessen, W. E. (1971a). ORFFE3. Oak Ridge National Laboratory, Oak Ridge, Tennessee. Busing, W. R., Martin, K. O., Levy, H. A., Ellison, R.
D., Hamilton, W. C., Ibers, J. A., Johnson, C. J. \& Thiessen, W. E. (1971b). ORXFLS3. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Cromer, D. T., Larson, A. C. \& Roof, R. B. (1960). Acta Cryst. 13, 913-918.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Flack, h. D., Moreau, J. M. \& Parthé, E. (1974). Acta Cryst. B30, 820-821.
Frank, F. C. \& Kasper, J. S. (1958). Acta Cryst. 11, 184 190.

International Tables for X-ray Crystallography (1967). Vol. II. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1968) Vol. III. Birmingham: Kynoch Press.

Kasper, J. S. (1956). Theory of Alloy Phases, pp. 264-276. Cleveland: ASM.
Levy, H. A. \& Ellison, R. D. (1960). Acta Cryst. 13, 270271.

McMasters, O. D. \& Gschneidner, K. A. Jr (1973). J. Less-Common Metals, 30, 325-342.
mcmasters, O. D., Gschneidner, K. A. Jr, Bruzzone, G. \& Palenzona, A. (1971). J. Less-Common Metals, 25, 135-160.
main, P., Woolfson, M. M. \& Germain, G. (1972). LSAM, a System of Computer Programs for the Automatic Solution of Centrosymmetric Crystal Structures. Department of Physics, Univ. of York, York, England.
Moreau, J. M. \& Parthé, E. (1972). C. R. Acad. Sci. Paris, 274, 823-826.
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys. Vol. 3. London: John Wiley.
Steeb, S., Gebhardt, E. \& Reule, H. (1972). Mh. Chem. 103, 716-735.
Yvon, K., Jeirschko, W. \& Parthé, E. (1969). A Fortran IV Program for the Intensity Calculation of Powder Patterns (1969 version). Univ. de Gerève, Laboratoire de Cristallographie aux Rayons X.

Acta Cryst. (1974). B30, 1748

Structural Transformations in Lead Iodide Crystals

By R.Prasad and O.N.Srivastava
Department of Physics, Banaras Hindu University, Varanasi 221005, India

(Received 23 October 1973; accepted 21 February 1974)
Solid-state phase transformations involving basic and long-period lead iodide polytypes have been investigated. The phase transformations have been initiated by annealing the crystals under a vacuum of 10^{-3} to 10^{-4} torr at a temperature of $260 \pm 20^{\circ} \mathrm{C}$ for a period of 6 h . While the basic 2 H structure undergoes transformations on each annealing run leading to the creation of new polytypes of higher periodicities, the same is not true for the high-period polytype 12 H . The polytype 12 H does not show any clearcut change under repeated annealing.

Introduction

In the past 20 years, much attention has been paid to the phenomenon of polytypism. From an applied point of view, the importance of these studies lies in the preparation of polytypes of known periodicities
which can be used as substitutes for various materials with specific properties (dielectric constant in the case of lead iodide) differing on a known scale. One of the easiest ways to achieve this is through phase transformations where, starting from one polytype, one can develop other polytypes after inducing phase trans-

